New Insights in the Removal of the Hydantoins, Oxidation Product of Pyrimidines, via the Base Excision and Nucleotide Incision Repair Pathways
نویسندگان
چکیده
BACKGROUND Oxidative damage to DNA, if not repaired, can be both miscoding and blocking. These genetic alterations can lead to mutations and/or cell death, which in turn cause cancer and aging. Oxidized DNA bases are substrates for two overlapping repair pathways: base excision (BER) and nucleotide incision repair (NIR). Hydantoin derivatives such as 5-hydroxyhydantoin (5OH-Hyd) and 5-methyl-5-hydroxyhydantoin (5OH-5Me-Hyd), major products of cytosine and thymine oxidative degradation pathways, respectively, have been detected in cancer cells and ancient DNA. Hydantoins are blocking lesions for DNA polymerases and excised by bacterial and yeast DNA glycosylases in the BER pathway. However little is known about repair of pyrimidine-derived hydantoins in human cells. METHODOLOGY/PRINCIPAL FINDINGS Here, using both denaturing PAGE and MALDI-TOF MS analyses we report that the bacterial, yeast and human AP endonucleases can incise duplex DNA 5' next to 5OH-Hyd and 5OH-5Me-Hyd thus initiating the NIR pathway. We have fully reconstituted the NIR pathway for these lesions in vitro using purified human proteins. Depletion of Nfo in E. coli and APE1 in HeLa cells abolishes the NIR activity in cell-free extracts. Importantly, a number of redundant DNA glycosylase activities can excise hydantoin residues, including human NTH1, NEIL1 and NEIL2 and the former protein being a major DNA glycosylase activity in HeLa cells extracts. CONCLUSIONS/SIGNIFICANCE This study demonstrates that both BER and NIR pathways can compete and/or back-up each other to remove hydantoin DNA lesions in vivo.
منابع مشابه
Association of -77T>C and Arg194trp polymorphisms of XRCC1 with risk of coronary artery diseases in Iranian population
Objective(s): Coronary artery disease (CAD) is the leading cause of death in both male and female worldwide. The main cause of CAD is the atherosclerosis of coronary arteries, which is, mostly caused by genetic alteration. 50% of such cases occur in mitotic cells where single-strand breaks occur spontaneously or due to ionizing radiation. X-ray repair cross-complementing protein 1 (XRCC1) as a ...
متن کاملOverlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae.
The removal of oxidative damage from Saccharomyces cerevisiae DNA is thought to be conducted primarily through the base excision repair pathway. The Escherichia coli endonuclease III homologs Ntg1p and Ntg2p are S. cerevisiae N-glycosylase-associated apurinic/apyrimidinic (AP) lyases that recognize a wide variety of damaged pyrimidines (H. J. You, R. L. Swanson, and P. W. Doetsch, Biochemistry ...
متن کاملDNA Repair Measured by the Comet Assay
The stability of the genome is of crucial importance, and yet the DNA molecule is prone to spontaneous loss of bases, and damage from exogenous and endogenous sources – with potentially mutagenic consequences. Damage can take the form of small alterations to bases (alkylation or oxidation); breaks in the sugar-phosphate backbone involving one or both strands (single or double strand breaks – SS...
متن کاملRemoval of cyclobutane pyrimidine dimers by the UV damage repair and nucleotide excision repair pathways of Schizosaccharomyces pombe at nucleotide resolution.
In Schizosaccharomyces pombe two different repair mechanisms remove UV-induced lesions from DNA, i.e. nucleotide excision repair (NER) and UV damage repair (UVDR). Here, the kinetics of removal of cyclobutane pyrimidine dimers (CPDs) by both pathways is determined at base resolution in the transcribed strand (TS) and the non-transcribed strand (NTS) of the sprpb2 +gene. UVDR does not remove les...
متن کاملDNA Base Excision Repair: Evolving Biomarkers for Personalized Therapies in Cancer
DNA repair is critical for maintaining genomic integrity. The DNA damage such as those induced by endogenous processes (methylation, hydroxylation, oxidation by free radicals) or by exogenous agents such as ionizing radiation, environmental toxins, and chemotherapy is processed through the DNA repair machinery in cells. At least six distinct DNA repair pathways have been described. A detailed d...
متن کامل